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1. Introduction 
It is generally recognized that profiling and 

quantification of biomolecules and by extension also 
untargeted metabolomic fingerprinting are best achieved by 
mass spectrometry (MS), usually hyphenated with liquid 
chromatographic (LC) separation. In spite of the expense 
and complexity of the instrumentation and the extensive 
sample pretreatment required before analysis, the enormous 
diversity of molecules detectable from complex biological 
samples justifies the prominence that may be attributed to 
LC-MS-based metabolomics. LC-MS provides high 
throughput, versatility, selectivity, accuracy, and precision 
in analytical measurements as well as multiplexing 
capabilities. However, the intrinsic features of the 
instrumentation and analytical protocols make the 
translation of current hyphenated MS techniques into 
clinical Point of Care or in situ testing unlikely. This is 
because the requirements are very different from those of 
laboratory testing, including (1) the limited time for sample 
preparation, which precludes extraction, preconcentration, 
and reconstitution processes, (2) the individualized nature of 
the analytical measurements, which are specific to a 
particular application and dispersed instruments are operated 
at low efficiency even if they are capable of high throughput 
in a batch mode (e.g., LC-MS/MS), (3) the physical size 
limitations of the sample, and (4) the need for analytical 
simplicity and automation. Since the first widespread 
attention to the concept of ambient ionization/sampling in 
2004 following the introduction of desorption electrospray 
ionization (DESI) a renaissance in the development of 
ambient ionization approaches was triggered, leading to 
many different technologies. Amongst these technologies, 
rapid evaporative ionization MS (REIMS) is to date the only 
online approach that is routinely used in vivo during human 
surgery for e.g. cancerous tissue excavation. 
 
2. Approach 

Besides of its churgical applications, in recent years, it 
has become obvious that REIMS and its variant of laser 
ablation ambient ionization MS (LA-REIMS) offer a 
number of possibilities for in situ or in vivo direct sampling 
and metabolomic fingerprinting.  
 
3. Results & Discussion 

Results from a number of projects demonstrating the 
applicability of REIMS at the production site or at the 
slaughter line for e.g. detecting food adulteration and/or 
assessing quality: case study of boar taint (Fig. 1)(1) will be 
presented.  

  
Fig. 1 Score plot of a validated orthogonal partial least-
squares discriminant analysis (OPLS-DA) model for a 
dataset containing blank (sow) (n=50), negative (untainted) 
(n=50) and positive (tainted) (n=50) boar neck lipid samples 
in the REIMS negative ion mode. 
 
Besides, also examples demonstrating the potential of LA-
REIMS for rapid biofluid metabolomics in the diagnosis, 
prognosis and prediction of a number of important food-
related conditions will be reported and discussed during this 
presentation: case study of type 2 diabetes (T2D) (Fig. 2). 

 
Fig. 2 Validated OPLS-DA models following: A. 
conventional UHPLC-HRMS (2) and B. novel LA-REIMS 
fingerprinting of stool (T2D, n = 35; healthy, n = 36). 
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partial least-square discriminant analysis (OPLS-DA) was used to
construct prediction models able to predict the Y-variable (classifica-
tion of samples in groups) from the X-matrix (mass spectrometric
fingerprint). In order to avoid over-fitting of the data, the quality of the
OPLS-DA models was evaluated through the goodness of fit (R2(Y))
and the predictive ability of the models (Q2(Y)). Permutation testing
(20 permutations) was performed to assess the risk that the model is
spurious, i.e. that the model fits the training set but does not predict Y
well for new observations. Additionally, CV-ANOVA (cross-validated
analysis of variance) and cross-validation, according to a leave 1/7 out
classification, were performed to confirm the validity of the models. In
parallel, OMB version 1.1.29.0 (Waters Corporation, Wilmslow, UK)
was used as a model builder recognition software tool. To this end, a
linear discriminant analysis (LDA) model including 80% of randomly
selected samples of each group was built. The remaining 20% was used
as a test set for external validation of the model and run through the
recognition software, whereby the observed classifications (based on
two burns) were recorded in post-acquisition mode.

3. Results and discussion

3.1. Discrimination between boars (tainted and untainted) and sows

To demonstrate the classification potential of REIMS for boar taint,
50 blank (sow), 50 boar taint positive and 50 negative samples were
analyzed. In a first experiment (data not shown), both negative and
positive ionization mode were taken into account, to increase the range
of detected metabolites, and were considered separately. In negative
ionization mode, better classification accuracy (98%) was observed
compared to positive ionization mode (94%). For this reason, it was
decided to continue all analysis in negative ionization mode for final
model building. The PCA plot revealed 17 potential outliers (Fig S1a);
however, only 5 of the latter were identified as true suspected outliers
using the Hotelling's T2 plot. Four outliers originated from the blank
group and 1 outlier from the boar taint positive group. Since the values
of these outliers were located between the 95% and 99% confidence
limit, they were omitted from further data analysis. The validity of the
supervised OPLS-DA model was evaluated through R2(Y) and Q2(Y),
CV-ANOVA testing and permutation tests. Generally, Q2(Y) values >
0.5 are regarded as good for biological models.[33] In this study, values
obtained for R2(Y) and Q2(Y) were 0.872 and 0.756, respectively,
indicating an excellent fit and predictive abilities. Moreover, CV-
ANOVA analysis (p < 0.001) demonstrated that the obtained OPLS-
DA model was highly significant. Finally, permutation testing demon-
strated that the predictive abilities of the original model (R2(Y) and
Q2(Y)) were higher in comparison to the permutated models (Fig S1b).
The obtained OPLS-DA model showed separation between the sow and
boar groups (Fig. 1). The two boar groups on the other hand showed
some overlap, nevertheless, cross-validation demonstrated that the
obtained model had a total correct classification rate of 99% and
consequently could be used as a highly accurate predictive tool for the

presence of boar taint. All blank and negative samples were correctly
classified, whereas of the boar taint positive samples, 98% was correctly
classified. The remaining 2% was classified as negative. The classifica-
tion results obtained by chemical and sensory analysis, which were
used as Y-information for model building, could form the basis of this
misclassification. Indeed, based on the sensory scores of the neck fat
samples, these samples were severely tainted. However, chemical
analysis by means of UHPLC-HRMS revealed boar taint levels of SK
and AEON barely exceeding the proposed odor thresholds of 200 and
500 µg kg−1, respectively. Since previous studies also report a discre-
pancy between the presence of SK and AEON on the one hand and the
sensory evaluation of boar samples on the other, this could potentially
lead to biased class information in the Y-axis, causing misclassification
in the OPLS-DA model [34,35]. In parallel to the OPLS-DA model, an
LDA model including 80% randomly selected samples was built and
loaded into a model builder recognition tool. The remaining 20% of
samples were run through the real-time recognition software, which
resulted in a 95% correct classification rate for the tainted boar group
and thus false negative rate (β error) of ≤5%. Additionally, for the sow
group also a correct classification rate of 95% was observed. For the
untainted boar group on the other hand, a correct classification rate of
65% was observed due to the presence of 1 outlier and allocation of 5
and 1 samples as tainted and blank (sow), respectively. Despite the
high percentage of false positive results, a false positive rate (α-error)
of ≤5% was observed for the sow and untainted boar samples
combined. Moreover, in contrast to false negatives, false positive
classifications will not result in a loss of consumers’ confidence in
pork industry. However, since tainted boar meat is often subject to
penalty fees, the number of false positives should be minimized
[12,36].

3.2. Discrimination between tainted and untainted boars

Despite the fact that the risk of boar taint is limited to carcasses of
uncastrated pigs, the indolic compounds are also present, although to a
lesser extent in sows, barrows and gilts. Nevertheless, only boar
carcasses should be screened at the slaughter line. Therefore, also a
more simplified OPLS-DA model was constructed including the boar
taint negative and positive group. The obtained model was significant
(p < 0.001) and demonstrated excellent predictive properties (R2(Y)
=0.969, Q2(Y) =0.917). Moreover, a permutation test showed that the
predictive abilities of the latter model were higher than those obtained
for the permutated models (Fig S2b). Finally, cross-validation revealed
that all samples were correctly allocated to the boar taint positive of
negative group, thus indicating 100% accuracy, specificity and sensi-
tivity of the obtained OPLS-DA model (Fig. 2). The obtained results
indicate that the untargeted REIMS analysis technique is promising for
implementation at the slaughter line. As this technique involves the use
of highly expensive, lab based equipment (Xevo G2-XS Q-TOF instru-
ment), implementation in a harsh environment such as the slaughter
line is unconventional and remains a challenge. However, as the iKnife

Fig. 1. Score plot of a partial least-squares discriminant analysis model for a dataset containing blank (sow) (n=50), negative (untainted) (n=50) and positive (tainted) (n=50) boar neck
fat samples in negative ionization mode.
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