The role of the disulfide bond in the interaction of islet amyloid polypeptide with membranes

Human islet amyloid polypeptide (hIAPP) forms amyloid fibrils in pancreatic islets of patients with type 2 diabetes mellitus. It has been suggested that the N-terminal part, which contains a conserved intramolecular disulfide bond between residues 2 and 7, interacts with membranes, ultimately leading to membrane damage and beta-cell death. Here, we used variants of the hIAPP(1-19) fragment and model membranes of phosphatidylcholine and phosphatidylserine (7:3, molar ratio) to examine the role of this disulfide in membrane interactions. We found that the disulfide bond has a minor effect on membrane insertion properties and peptide conformational behavior, as studied by monolayer techniques, (2)H NMR, ThT-fluorescence, membrane leakage, and CD spectroscopy. The results suggest that the disulfide bond does not play a significant role in hIAPP-membrane interactions. Hence, the fact that this bond is conserved is most likely related exclusively to the biological activity of IAPP as a hormone.

 

Authors: 
L. Khemtémourian, M.F. Engel, J.A. Kruijtzer, J.W.M. Höppener, R.M. Liskamp, J.A. Killian
Authors from the NMC: 
DOI: 
10.1007/s00249-009-0572-4
Pages: 
2010; 39 (9): 1359-1364
Published in: 
European Biophysics Journal
Date of publication: 
August, 2010
Status of the publication: 
Published/accepted